Special gas combustion in Water Tube Boilers: Low LHV gas burners.
Low LHV gas

Blast Furnace Gas
Flow range from 2,000 to 40,000 Nm3/h per burner

Process Gas
Flow range from 2,000 to 40,000 Nm3/h per burner

Coke Oven Gas
Flow up to 6,000 Nm3/h per burner

Landfill Gas, Biogas
Flow up to 10,000 Nm3/h per burner

Gas from coal mines (firedamp)
Flow up to 5,000 Nm3/h per burner
Blast Furnace Gas

→ **Typical Composition (% volume)**
 - CO: 26%
 - H2: 3%
 - CH4: 0,5%
 - N2: 57%
 - CO2: 13%
 - O2: 0,5%

→ **Features**
 - Toxic gas due to the high CO content
 - Low LHV, 650 to 850 kcal/Nm3
 - Low available pressure, 10 to 60 mbar
 - High flue gas flow at relatively low temperature

→ **Burners**
 - Very large gas circuits
 - Low NOx emissions, < 50 mg/Nm3
Process Gas

→ **Example (% volume)**
 - CO: 3,98%
 - H2: 25,56%
 - CH4: 0,53%
 - N2: 67,50%
 - CO2: 0,77%
 - Ar: 0,82%
 - H2O: 0,83%

→ **Features**
 - LHV from 650 to 2500 kcal/Nm3
 - Usually available at low pressure, 10 to 200 mbar
 - High flue gas flow and relatively low flame temperature

→ **Burners**
 - Very large gas circuits
 - NOx emissions depending on LHV and components
Fives-Pillard KFT type burners for Blast Furnace Gas and Process Gas (external scroll)
Fives-Pillard K type burners for Blast Furnace Gas and Process Gas
MAIN REFERENCES, of Blast Furnace Gas burner installations (KFT type)

EMA POWER Hungary - BOILERS 7 and 8 (tangential firing)
EMA POWER Hungary - BOILER 9 (front firing)
EDF DUNKERQUE : K TYPE Blast Furnace Gas burner
Development of Blast Furnace Gas burner for very low LHV: Improved air mixing

FLUENT CFD: Visualization of Air / BFG mixing

Contours of Mole fraction of O2

FLUENT 6.1 (3d, ε)
Development of Blast Furnace Gas burner for very low LHV: Improved air mixing
SRD Dunkerque Reference with new KFT development (2012)

Boiler capacity

- NG firing 60 t/h
- BFG firing 45 t/h
- 4 Burners 12 MW each

BFG LHV: 670 to 830 kcal/Nm3
Main Results

Boiler capacity
- NG firing: 60 t/h
- BFG firing: 45 t/h
- 4 Burners: 12 MW

NG firing:
- FGR 10%
- Ambient combustion air
- NOx 75 mg/Nm³

BFG Firing
- No FGR
- Combustion air: 200°C
- NOx 26 mg/Nm³
<table>
<thead>
<tr>
<th>End user</th>
<th>Richemont Power station</th>
<th>TOTAL-BP-MOBIL</th>
<th>ARCELOR MITTAL</th>
<th>SAINT GOBAIN (France)</th>
<th>ARCELOR MITTAL</th>
<th>EMA Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Richemont (France)</td>
<td>Dunkerque (France)</td>
<td>Ebange (France)</td>
<td>Pont à Mousson (France)</td>
<td>Fos/mer (France)</td>
<td>Dunaujvaros (Hungary)</td>
</tr>
<tr>
<td>Number of boilers</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Steam production (t/h)</td>
<td>420</td>
<td>46 / 60</td>
<td>50</td>
<td>40</td>
<td>220</td>
<td>75</td>
</tr>
<tr>
<td>Number of burners</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>BFG flow rate per burner (Nm3/h)</td>
<td>34 425</td>
<td>11 920</td>
<td>17 500</td>
<td>20 000</td>
<td>35 520</td>
<td>10 800</td>
</tr>
<tr>
<td>LHV (kcal/Nm3)</td>
<td>750 to 850</td>
<td>830</td>
<td>700 to 900</td>
<td>600 à 900</td>
<td>>750</td>
<td>700</td>
</tr>
<tr>
<td>Pressure at burner (mmH2O)</td>
<td>50</td>
<td>150</td>
<td>300</td>
<td>150</td>
<td>140</td>
<td>250</td>
</tr>
<tr>
<td>Coke Oven Gas flow rate (Nm3/h)</td>
<td>N/A</td>
<td>4225</td>
<td>2000</td>
<td>5650</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>LHV (kcal/Nm3)</td>
<td>N/A</td>
<td>4300</td>
<td>4300</td>
<td>4437</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Pressure at burner (mbar)</td>
<td>N/A</td>
<td>2000</td>
<td>1000</td>
<td>40</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Other fuel</td>
<td>FO2</td>
<td>FO2</td>
<td>GN</td>
<td>GN</td>
<td>FO2</td>
<td>GN</td>
</tr>
<tr>
<td>Combustion air temperature (°C)</td>
<td>306 to 342</td>
<td>230</td>
<td>20</td>
<td>20</td>
<td>190 to 250</td>
<td>190 to 260</td>
</tr>
</tbody>
</table>
Coke Oven Gas

→ **Typical Composition (% volume)**
 - H2: 50%
 - CO: 8%
 - CH4: 29%
 - CnHm: 4%
 - CO2: 2%
 - N2: 7%

→ **Features**
 - Presence of impurities such as tar and H2S
 - LHV 4500 kcal/Nm3
 - Available pressure from 50 mbar to several bars
 - Frequent use as additional fuel with BFG burners

→ **Burners**
 - Gas circuit dimension depending of pressure available
 - NOx emissions from 250 to 350 mg/Nm3 with standard burners
Coke Oven Gas Burners

Natural draught burner, Coke Oven Gas fired (Shanxi Cooking company – China)
Coke Oven Gas Burners

Natural draught burner, Coke Oven Gas fired (Shanxi Cooking company – China)
Coke Oven Gas Burners

Coke Oven Gas circuit on BFG burner (ARCELOR MITTAL Fos/mer)
Landfill Gas (and Biogas)

→ **Typical Composition (% volume)**
 - CH4: 50% (variable from 20 to +50%)
 - CO2: 29%
 - N2: 18%
 - H2: 3%
 - H2S, benzene, toluene,

→ **Features**
 - LHV from 2000 to 5200 kcal/Nm3
 - Available pressure usually around 100 mbar

→ **Burners**
 - Large gas circuit
 - NOx emissions < 100 mg/Nm3
Fives-Pillard Bioflam® burner for landfill gas or biogas

Burner for LHV > 3000 kcal/Nm3
Scroll Burner for landfill gas:

Burner for LHV > 2000 kcal/Nm³ (South Korea Sudokwon Reference)
Fives-Pillard Bioflam® burner for landfill gas or biogas

Biogas fired burner on biomass dryer application
Gas from coal mines (firedamp)

- **Typical Composition (% volume)**
 - CH4: 30% to 90%
 - Air

- **Features**
 - LHV from 2600 to 7800 kcal/Nm3
 - Available pressure usually around 100 mbar (sometimes around 1 bar)

- **Burners**
 - Large gas circuit when the pressure is low
 - NOx emission < 100 mg/Nm3
Burner for coal mine gas (scroll)

Burner for LHV > 2000 kcal/Nm3 (Elyo Forbach Reference)
Some references for landfill gas, biogas and coal mine gas

<table>
<thead>
<tr>
<th>End user</th>
<th>ELYO</th>
<th>DALKIA</th>
<th>DALKIA</th>
<th>SUDOKWON</th>
<th>CODEMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
<td>Forbach (France)</td>
<td>Plessis-Gassot (France)</td>
<td>Fresnes/Marne (France)</td>
<td>Seoul (Korea)</td>
<td>(France)</td>
</tr>
<tr>
<td>Number of generators</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Type of generator</td>
<td>Superheated Water</td>
<td>Steam (FML 12.71)</td>
<td>Steam (FML 12.79)</td>
<td>Steam</td>
<td>Biomass dryer</td>
</tr>
<tr>
<td>Steam production (t/h)</td>
<td>N/A</td>
<td>30</td>
<td>30</td>
<td>106</td>
<td>N/A</td>
</tr>
<tr>
<td>Output (MW)</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Number of burner per generator</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Type of burner</td>
<td>Scroll</td>
<td>Bioflam</td>
<td>Bioflam</td>
<td>Scroll</td>
<td>Bioflam</td>
</tr>
<tr>
<td>Type of gas</td>
<td>Coal mine gas</td>
<td>Landfill gas</td>
<td>Landfill gas</td>
<td>Landfill gas</td>
<td>Biogas</td>
</tr>
<tr>
<td>LHV (kcal/Nm3)</td>
<td>2580 to 7740</td>
<td>3200 to 5200</td>
<td>3200 to 5200</td>
<td>2000 to 4500</td>
<td>3200</td>
</tr>
<tr>
<td>Gas flow rate per burner (Nm3/h)</td>
<td>4600</td>
<td>9500</td>
<td>9500</td>
<td>6400</td>
<td>4600</td>
</tr>
<tr>
<td>Gas pressure (mbar)</td>
<td>100</td>
<td>150</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>Other fuel</td>
<td>N/A</td>
<td>Heavy oil</td>
<td>Heavy oil</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Combustion air temperature (°C)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>320</td>
<td>20</td>
</tr>
</tbody>
</table>